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ABSTRACT. Documenting structural data in database rather than flat
files has been a great stimulation as it permits manipulating data in
many forms and aspects that are necessary in the process of structural
analysis. The highly complicated structural features gave rise to sever-
al structural elements in the area north of Wadi Fatima, Kingdom of
Saudi Arabia. This required customizing a database for accom-
modating those diversified measurements in a relational fashion for the
subsequent display, analysis and computation, according to the user's
options using Visual Basic under Windows environment. Structural
elements can be either merged or split into subsets based on station/
substation measurements, to delineate domains of structural homoge-
neity. Folding analysis on  stereoplots  with fold girdles and principal
axes of folding can be done using simple menus and commands.

Data can be entered through a menu for creating/updating the
database files or it can be entered through any text editor according to
a given data model. The database is provided with simple online help
and supported with many warning messages to ensure proper use. The
flexibility of the present database structure enables easy remodeling to
fit structural data from complicated structural areas.

Introduction

Wadi Fatima  is located at the western edge of the Arabian Shield about 50 km
northeast of Jeddah, where the Precambrian basement rocks are overlain by a
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sequence of sedimentary section forming five prominent mountains (Fig. 1).
This sedimentary sequence, known as Fatima Formation, is shortened consis-
tently as indicated by northeast-southwest trending folds. Nebert et al. (1974)
systematically mapped the Fatima Formation and produced the most compre-
hensive study of Wadi Fatima area. Moore and Al-Rehalil (1989), conducted a
regional geological compilation of Makkah quadrangle including Wadi Fatima
area. Zakir and Moustafa (1992) carried out a detailed structural analysis in
Jabal Abu Ghurrah at the easternmost exposure of the Fatima Formation and
they indicated that, the formation was subjected to a NNW-SSE tangential
compression. The main access to the area is the Jeddah-Makkah highway to
Bahrah, and then from Bahrah to Al-Jamum paved road.

FIG. 1. Location of north Wadi Fatima area.
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Structural data related to those conspicuous mountains have been partially
documented in the database, while those collected from the eastern part of Jabal
Shobairim (Fig. 2) are particularly used for demonstration.

FIG. 2. Geologic map of the eastern part of Jabal Shobairim, modified after Nebert et al., 1974.

The remarkable intensive folding and fracturing affecting Fatima Formation
poses some questions about the way of documenting measurements for subse-
quent analysis and interpretation. In the first place, a special database should be
design so that different types of data can easily be manipulated, through
merging and splitting to define homogenous structural domains. The available
on market S/W such as Rock Ware or Dips can hardly coup with such require-
ments. The file structure of such S/W is so rigid, that the user can neither split
complicated data nor related data can be grouped together. The analysis of
complicated folding structure is mainly based on the concept of structural
domains (Turner and Weiss, 1963). Accordingly, any complicated folding struc-
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ture can be divided into sets of homogenous domains so that the plot of linea-
tions or poles to folded surfaces is disposed about a great circle (cylindrical
folding). Further, the calculated fold axes are re-plotted (synoptic diagram) for
the calculation of refolding axis 

    The present code was first written for an ICL, 1900 series main frame
computer for the analysis of folding structures of Wadi Atalla, Central Eastern
Desert of Egypt (Mostafa, 1979). Later on, the code was rewritten for the PC
computer under DOS environment (Mostafa, 1990). In the last case, some basic
subroutines were added to replace those called from the ICL Library
(FPROOT1) to solve the eigenvalue/eigenvectors problem. Needless to say,
those two versions of programming are nothing but text-based; where the user
has no way of selecting from options or changing the order of procedures as
dictated by the program. In the present study, the code was again written as
Graphical User Interface (GUI) under Visual Environment as Windows Appli-
cation. Microsoft Visual Basic (Version 5) is used for such an application.
Although GUI environments require more complexes programming tools, users
still feel free to select from menus and option buttons and previewing plots
before printing.

Map Units

The exposed rocks of Jabal Shobairim area belong to two main series of
rocks, namely the pre-Fatima basement and the Fatima Formation (Fig. 1&2).
The pre-Fatima basement consists mainly of granite intruding the metamorphic
rocks represented by hornblende schist, amphibolite and marble. Both the
granite and metamorphic rocks are intruded by E-W and NE-SW trending
andesite dykes and covered by volcanoclastics. The granites are 773±16 Ma old
(Rb/Sr, whole rock age; Duyverman et al., 1982)

The Fatima Formation consists of non-metamorphosed to very slightly
metamorphosed (lower green schist facies) sedimentary rocks (Moore and Al-
Rehalaili, 1989). Fatima Formation is divided into three main units: 

  i � Lower green clastic unit
 ii � Middle carbonate unit of predominant yellowish-white color
iii � Upper clastic unit of a characteristic red color interbedded with pyroclas-

tics and volcanics.

     These three main units were named the lower, middle and upper members of
the Fatima Formation respectively.

The lower Fatima member consists mainly of green siltstone, claystone, shale
and coarse to fine grained arkosic and tuffaceous sandstone. Basal conglomerate
bed(s) are exposed in many locations in the northern part of the area and
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includes sub-angular to rounded fragments derived from the underlying granite
and older rocks. Cross stratification, current ripple marks and mud cracks charac-
terize this member and indicate a shallow water environment of deposition.

The middle Fatima member includes a brownish-red, medium grained
sandstone unit at the base and a yellowish white to gray limestone unit at the
top with characteristic stromatolitic bed in the upper part. A thick andesite sill
exists near the top of the middle Fatima member with thin limestone section
overlying the andesite sill, and is thermally backed into white to olive green
marble that marks the upper contact of the middle member.

The upper Fatima member consists of brick red siltstone and sandstone that
exhibit ripple marks graded bedding and mud cracks. The siltstone-sandstone
unit is interbedded and covered with andesite sills and flows and volcanoclastic
and agglomerate beds.

Presentation of Orientation Data

The analysis and presentation used with vectorial data markedly differ from
those applied to scalar variables. Scalars are quantities having magnitudes that
can be described by a single number such as temperature, radioactivity and
elevations. Vectors are quantities having magnitudes, directions and points of
application. In our case, a vector's magnitude is arbitrarily assigned a unit value
giving all observations equal weight. Vector sense is determined by the geolog-
ical assumption that pole to bedding or foliation points towards younger or
older successions as explicitly declared. If vectors lack sense they will be
regarded as orientation measurements such as fold axes, rodding, elongated
pebbles and poles to joint planes, because one end of the line can not be distin-
guished from the other.

   The attitudes of orientation measurements are all measured by compass. For
each measurement, two angles are recorded; u and v (spherical polar coordi-
nates). The angle u denotes the azimuth from the north in clock-wise direction
and v is the angle of dip/plunge (Fig. 3). The measured attitude may be parallel
to the line of maximum dip of a plane (planar element) or it may be parallel to
the line itself (linear element).  The measured stations are labeled on maps with
the identified rock type and the required notes. Orientation data can be present-
ed by the two following techniques:

a) Spherical/Cartesian Coordinates

For the purpose of analysis, the measured attitudes whether of linear or
planar elements can be regarded as a set of three dimension vectors. The
attitude of planar feature is represented by a vector of unit length perpendicular



M.E. Mostafa & F.A. Zakir44

to the plane.  The attitude of a linear feature is represented by a unit vector
parallel to it. The presumed positive sense direction is in accommodation to the
projection of poles disposed on the lower hemisphere.  Figure 3 shows the origi-
nal (geographic) coordinates, a set of three mutually perpendicular axes inter-
secting at the origin of a unit sphere where vectors originate. The process of
decomposing a vector into its three components is a basic one for the subse-
quent analysis and computation. The original measurements might be expressed
in terms of axes positively directed to north (1-axis), east (2-axis) and vertically
downwards (3-axis) satisfying the Right Hand Rule. It can be simply proved by
trigonometry, that with these axes the direction cosines (l, m, n) of the line OP
(measured in spherical polar coordinates) plunging v degrees in a direction u
degrees east of north are:

l = Pcx = cos v. cos u        m = Pcy = cos v. sin u         n = Pcz = sin v

FIG. 3. Presentation of linear element/pole to planar element in spherical polar coordinates P(u, v).

Projections:

a. cartesian (Pcx  Pcy  Pcz)

b. stereographic (Psx  Psy)
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The sum of squares of direction cosines is unity

      l2 + m2 + n2 = 1 Pythagorean  theorem

It is convenient to adopt a more compact notation similar to that used in solid
geometry and factor analysis (Harman, 1960). For a set of measured vectors, the
direction cosines of the i-th measurement can be denoted as di1, di2, and di3;
where the first subscript denotes the number of measurement and the second
subscript denotes the axis from which the cosine is measured. The vector (di1
di2  di3) can be more compactly denoted as di. The entire array of N such
measurements arranged in n rows and three columns comprises the data matrix
D. Underlining is used to indicate vectors and capital letters to indicate matric-
es.

The vector set A can be expressed by the data matrix D of the direction
cosines as follows

The superscript T denotes that the matrix is transposed, i.e., rows and
columns are interchanged. The following computations stem from the matrix D
using the symbol i to indicate summation of the expression that follows for all
values of i from 1 to N.

1 � Sum of direction cosines on each axis is as follows 

               1 � axis; Σ di1
               2 � axis; Σ di2
               3 � axis; Σ di3

2 � The variance-covariance or dispersion matrix C is formed by summing
squares of direction cosines on each axis, and summing cross products of direc-
tion cosines between the appropriate pairs of axes.

The matrix C can be written in a compact notation as follows
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The general term in C is cij.

The terms in the leading diagonal where i = j are sum of squares of direction
cosines on each of the three defined axes. The other terms where i & j are sum
of cross products of direction cosines between the defined pairs of axes. The
terms cij = cij,   i =  j. The matrix C is symmetric with real elements. According
to Bellman (1970) and Carr (1995) a symmetric real matrix is characterized by:

1 � The matrix coincides with its transpose.
2 � All the eigenvalues of a symmetric matrix with real elements are real.
3 � The characteristic equation of a symmetric real matrix has only real roots

(eigenvalues).
4 � The eigenvectors of a symmetric real matrix corresponding to distinct

eigenvalues are orthogonal among  themselves.
5 � Any real symmetric matrix can be reduced to diagonal form by means of

a similarity transformation, the elements of the leading diagonal 
   are the eigenvalues.

6 � For every linear transformation with a real symmetric matrix there is an
orthogonal basis (consisting of real  eigenvestors of the given matrix) in which
the transformation  matrix is diagonal.

These characters of the symmetric real matrix are the foundations for the
subsequent computation in folding analysis.

b)  Stereographic Projection (Equal Area)

Stereographic projection or stereogram is two-dimensional mode-
representing points distributed on the surface of a sphere. This mode is
commonly used in structural geology, petrofabrics and cartography. The equal
area stereographic projections are only used throughout the present work.
Stereograms are projection for points disposed on the surface of lower
hemisphere of radius R. For the purpose of automatic plotting of the data it is
required to manipulate analytically the equation of projection and finding out
the indices of the projected point in a two dimension Cartesian coordinates.
Figure 3 shows the vector OP plots at point Ps with coordinates Psx and Psy
when projected from the lower hemisphere by an equal area projection as
follows

                
The coordinates (x, y) of the point P are computed as follows

    OP R v= 2 45 2sin ( – / )

    

x Psx R v u

x Psy R v u

= =

= =

2 45 2

2 45 2

sin ( – / ).  cos 

sin ( – / ).  sin 
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where, R is the radius of the sphere and u & v are the direction and amount of
dip of the given line Op. The coordinates of the point g' (x, y) are referred to the
origin of the stereogram. For automatic plotting it is better to translate the origin
O a distance R to the west and a distance R to the south. The origin O occupies
the lower left corner of a square of side R long. The new set of coordinates is
modified for automatic plotting as follows

Folding Analysis 

Folds might be regarded as three-dimensional bodies that could be randomly
oriented in space. Recent studies treat the geometrical measurements of the
folded surfaces in order to find out the symmetry elements inherited in the folds
that can be taken for further and concrete definition and classification of folds.

Structural measurements are generally referred to geographic (original) axes
as oriented objects in three-dimension space. These reference axes bear no
relation to the measured structure. As pointed out by Paterson and Weiss (1961),
the investigator frequently wishes to consider three-dimensional phenomena in
terms of their symmetry, similar to that in crystallography, crystal faces are fully
described with reference to the symmetry elements using Miller indices. Symme-
try arguments are well known in structural geology. For instance, a geologist
may consider a structure in terms of folding parallel to the fold axis and folding
normal to the fold axis in the belief that these directions are related to the stress
pattern that produced the fold. Paterson and Weiss (1961) showed that the
symmetry argument is implicit in the conclusions of many other geologists who
may relate, for example, the symmetry of a sedimentary deposit to the symmetry
of the current movement which produced it. Paterson and Weiss (1961) quote
Curie (1884) as stating "When certain cause produces certain effects, the
elements of symmetry of the cause must be found again in the effects produced".
This is the impressive concept of cause and effect.

Three numbers representing the cosines of the angles between the measure-
ment and each of the three reference axes can express each measurement of
orientation data.  If the numbers are regarded as the original variable techniques
similar to those of factor analysis can be used to compute new variables, which
have real physical significance.  The new variables are for the same measure-
ments but referred to new axes, which are three mutually perpendicular lines in
space referred to as the principal axes. The process in referring measurements to
symmetry axes of folding is similar to that used in factor analysis. Having
analyzed a distribution of three dimension vectors into components, which have

    

x R R v u

y R R v u

= +

= +

( sin ( – / ).  cos )

( sin ( – / ).  sin )

2 45 2
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meaning in terms of the symmetry of the distribution; standard statistical
methods might be applied subsequently to analyze these components. The
breakdown of a complex distribution into components allows quantitative
methods to be applied in fields where such an approach had not previously been
widely used (Loudon, 1964).

a) Variance-Covariance Matrix

The variance-covariance matrix C completely summarizes the data matrix
derived in our case from folding measurements. But, it does not at first appear
to give the geologist any information of value.  Matrices, which refer to differ-
ent folds, can not be used to compare the properties of the folds unless the folds
happen to be similarly oriented in space. The reason for this is that the reference
axes are arbitrary lines directed in north, east and vertically downward direc-
tions and the axes are not related to the particular fold under consideration. The
values of the variance and covariance terms in the matrix reflect the amount of
folding in different directions but the directions, do not have any apparent
geological significance.

Folding is frequently described by a set of vectors normal to the folded
surface. These are graphically disposed on a stereogram for investigating the
pattern of fold with reference to the geographic (original) axes.  On the other
side vectors describing a folded surface can be numerically analyzed with refer-
ence to the original axes as an oriented object in three-dimension space.  These
geographic axes bear no relation to the measured structure and the investigator
wishes to consider three dimension phenomena in terms of their symmetry.  The
latter will eventually reflect the symmetry of the applied force. In this way folds
that are similar in style but randomly oriented in space will have the same statis-
tical indices when referred to their principal axes. The computational methods
use the following equations

di1 =  x  =  l  =  cos u. cos v,    

di2 =  y  =  m  =  sin u. cos v     

di3  =  z   = n  = sin v                

Where, (dij) is the general term in the data matrix D and i denote the i-th
measurement and j denotes the order of the axis.

The variance-covariance matrix C is computed from the matrix D by finding
means of sum of squares and sum of products on the appropriate axes. The
matrix C is symmetric and real (positive definite), which is associated with real
positive eigenvalues. The eigenvectors E corresponding to distinct eigenvalues
are orthogonal among themselves (Davis, 1986 and Carr, 1995), i.e., CE = λ E
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or  (C -λ I )  E = 0. For a given eigenvalue, there exists a vector E satisfying the
equation if and only if (C -λ I )  = 0, which means the matrix (C -λ I ) is singu-
lar. Having found the values of λ's from  (C - λΙ ) = 0, the orthogonal matrix E
can be calculated from the matrix equation  (C - λΙ ) E  = 0.

The original data (dij) can now be rotated to refer to the principal axes thus

tij    =  dij . E

b)  Principal Axes of Folded Surfaces

The concept of computing the principal axes of a distribution is similar to the
technique used in factor analysis by Harman (1960) which has been used in
geology by Imbrie (1963). Loudon (1964) applied the method on a rather
simple type of folds in two dimensions and has deepened the concept of rotating
the original data matrix to refer to the symmetry axes, which have geological
significance. The rotation of the data matrix D to refer to the principal fold axes
permits to get three uncorrelated variates (ti1 ti2 ti3) instead of the correlated
ones (di1 di2 di3). The original three-dimensional vector distribution can be
regarded as broken down into three uncorrelated scalar distributions by rotation
to a position where covariance terms vanish or tend to zero. Statistical methods
can be applied much more readily to the uncorrelated components than to the
original vectors (Loudon, 1964 and Whitten.1966).

Again, the equation  (C -λI) E  = 0 has a solution if and only if the matrix (C -
λI) is singular, i.e. the determinant  IC -λI = 0, this  when written in full gives   

This gives a cubic equation in  (λ)
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The above cubic equation is the characteristic equation of the matrix C
(Bellman, 1970). So far we are dealing with a positive definite matrix C the
latent roots of the characteristic equation are always positive and real. From the
theory of equations, Cardan's method has been simplified by Mostafa(1979) for
solving such a special case to calculate the eigenvalues (λ�s) and  eigenvectors
(E).

The three columns in the matrix E represent the direction cosines of the
principal axes of folding. While E is an orthogonal matrix it transforms the
distribution from one Cartesian coordinates (geographic) to another  (principal
fold axes) as follows

ti  = di  . E

The rotated vector of the i-th measurement is

ti  =  ( ti1  ti2  ti3)

Each of the variates  ti1,  ti2 and  ti3 are uncorrelated and has direct geological
significance, and can be treated independently of the other two.

Based on the characters of the orthogonal matrices the relation E.E. = I  holds
true. 

Software Documentation

Full documentation of the software (S/W) permits future upgrading and also
to help users for proper performance. The items of S/W will be discussed as
follows:

1. Interacting Windows with Database

Folding Analysis Window.
Refolding Analysis Window.
Preview/Print strereoplots Window.
Data Entry Window.

2. Modules

Reading file of database Module.
Stereoplots Module.
Computing principal folding axes Module.
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e e e
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3. Computational Subroutines

DCTRANS transforms data from spherical coordinates (phi, theta) to Carte-
sian coordinates (x, y, z). The subroutine also computes the variance-covariance
matrix C as well as sum of direction cosines along the geographic axes.

EIGEN computes the eigenvalues (λ) and eigenvectors (E) from the matrix C. 

ANGLE computes the attitude of the principal fold axes from the matrix E.

ROTATE rotates original data to refer to the principal axes of fold instead of
referring to the geographic axes.

4. Plotting Subroutines

Plotting lines/poles to planes (point diagram).
Plotting lines/poles to planes with fitted fold girdle (pie diagram).

5.  Procedural Subroutines

These are activated through mouse generated event. 

6.  Arrays 

Different arrays are used for storing data and getting communication between
subroutines.

Orientation data are plotted from lower hemisphere using equal area projec-
tion by default. Equal angle projection can be optionally selected.

User's Guide:

On starting the database, a logo is displayed which gives two choices:

1 � Folding analysis.
2 � Data entry.

� The folding analysis can be managed from three windows. The first one is
the Folding Analysis Window (Fig. 4a,b) which provides  a list to select the
database to load, and a drop down menu containing different types of structural
elements to select from.

� Station names are listed in the station list box. Double clicking a selected
station directly lists substations in the substation list box.

� Choose between point diagrams with or without fitted fold girdles and −
fold axes according to a selection from an option menu.

� The stereo plots are either one big plot or eight small satellite plots −
according to a selection from an option menu.
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� To plot a station/ substation data on big plot double click on the station/ −
substation name in the appropriate list box after selecting one big plot option.

� To plot stations/substations data on small plots click on the small plot to −
set focus on, and then double click station/substation name in the appropriate
list box after selecting nine-plot option.

� Data may also be merge from different station/substation in one plot after −
selecting eight-plot option.

� Do not forget to clear/reset the merge flag when turned to another opera-
tion. 

� One big plot may be used for displaying complicated data of certain −
station. Meanwhile, on the small plots, data related to substations is displayed.
Thus, the complicated fold can now be decomposed into sub-domains.

� Having decomposed a complicated fold into sub-domains go to the −
second window (Refolding Window, Fig. 5) to assemble the different fold axes
on one plot fitted with a fold girdle whose pole represents the refolding axes.

FIG. 5. Refolding analysis window.
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� Facility is provided to discard one or more fold axes from the plot just to  −
improve the fitted girdle. This can be done through the Folding Analysis
Window, where one can discard one or more odd plots that have no contribution
to the folding pattern. One needs to double click the plot/plots to have them
discarded.

� Plots from the first or second window can be previewed in the third −
Preview Window (Fig. 6) before printing. Double clicking on the plot  is needed
to transfer it to the preview menu, where the previewed plots can be printed to
fit an A4 page. 

FIG. 6. Print preview window.

Entering data to the database file is done in two different methods:

1 − Via the data entry Window.
2  − Using a text editor according to a given data model file.
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To enter data via the data entry window (Fig. 7), you are required to provide
station/substation name, type of structural element and a string of the measure-
ments themselves, delimited by spaces. Data is displayed while being entered
and later transferred to a temporary file for further checking and editing. If they
are valid, they are used to update/create the database-file. 

Entering data using a text editor is much simple and it can be done following
the data file structure as shown in Fig. 8.

The previously discussed user's guide steps are part of the on line help.

Discussion

Samples of data from the eastern part of Jabal Shobairim are used for demon-
stration. Folding Analysis Window (Fig.4a) is provided with tools to plot and
merge/split station/substation data of different structural types. Folding data are
displayed as point diagrams with or without fitted fold girdle. The window
shows plots of poles to bedding planes in different stations in Jabal Shobairim.

FIG. 7. Data entry window.
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While some stations show simple folding patterns (#9,9D, and 15D), others
show rather complicated folding patterns (#13,14,15,16 and 17). The central
plot shows that measurements in station #15D are simply disposed about a great
circle, with a sub-horizontal fold axis plunging 17 in the direction 226.
Meanwhile, measurements in station #13 represent poles to a northwestern limb
of a fold (Fig.4b) that has undergone flexing. According to substation measure-
ments, this data has been further classified into homogeneous domains. Plotting
fold axes from each such domain in one synoptic plot (Fig.5) shows that they
are disposed about a great circle whose pole represents the refolding axis (122/
61). One or more fold axes that are not disposed about the great circle can be
canceled. From the Folding Analysis Window double clicking the aberrant
domain(s) will cancel it. Repeating refolding analysis process will have the
synoptic plot filtered. 

Fig. 8. Samples of different types of structural datas held on the database file, Jabal Shoberim.

REM STATION #6 FOLDED PART � TOP OF MIDDLE FATIMA
6, 1
1
9, BP
145   43   333   38   125   21   305   85   125   30   115   23
155   42   134   39   145   43
REM STATION #7
7, 1
1
2, BP
175   34   165   30
REM STATION #9(A1,B1,C1,D1,E1) FOLDED PART � MIDDLE FATIMA
9,5
9A1, 1
4, BP
304   69    300   58   300   57   298   55
9B1, 1
1, FH
034   02
9C1,   1
4, BP
117   60   120   58   119   61   115   57
9D1, 1
1, AP
125   83
9E1, 1
4 BP
292   65   295   62   289   290   62
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Fig. 8. Contd.

REM   STATION #9D (A2, B2)  ANOTHER FOLD
9D, 2
9DA2, 2
1, BP
304   51
2, FH
025   04   021   10
9DB2,  1
1, BP

Legend:
Bedding Plane (DD/D) �BP�, Axial Plane (DD/D) �AP�, Fold Hinge (T/P) �FH�, Cleavage (DD/
D) �CLVG�, Fold Limb (DD/D) �FDLMB�, Lineation (T/P) �LN�, Stretching Lineation (T/P)
�STLN�, JOINT (DD/D) �JT�, Fault (DD/D) �NORFT�, �REVFT�, �THEFT�.

The Print Preview Window (Fig.6) enables to transfer plots from other
windows for previewing before printing. 

The Data Entry Window (Fig.7) enables entering data of different structural
types from different stations/substations. Data can be viewed/edited before
transferring to the database files. Data can also be entered through a text editor
according to the database file structure as shown in Fig. 8.
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w� bIF*« wD�« qOK��� W&U�  U�UO� �b�U� rOLB�Ë �«b�≈
W��uF��« WO�dF�« WJKL*« − WL�U� Í�«Ë �UL� WIDM�

d�«� sL�d�« b�� �«u�   Ë   vHDB� bO��« vHDB�
WO�dF�« dB� W��uNL� − �d����UI�« , Í�UF*« , W�ËuM�« �«u*« W�O�

e�eF�«b�� pK*« WF�U� , ÷�_« ÂuK� WOK� Ë
W��uF��« WO�dF�« WJKL*« −  �b���

 U�U?O� �b?�U?� rO?L?B�Ë �«b?�≈ w�U?(« Y�?��« �ö?� - ÆhK�?�?�*«
WO�dF�« WJ?KL*U� WL�U� Í�«Ë �UL� W?IDM� w� bIF*« wD�« qOK�?�� W&U�
d?&UM�Ë  U�U?O� �U?�d?�?�«Ë kH?� w?� �b?�U?I�« Ác� b?�U?�� Æ W��u?F?��«
p��Ë  U�UO?��« W'UF� qN?�� U2 ©W�u��?�Ë WOD�® WHK�?<« wD�« VO�«d�
vL?��U� vK?� �uB?�K� W?HK�<« �U?O?I�«  UD��  U�U?O� Z��Ë qB?H�
w� �u�?� �u�  uD�« b?� UN�Q� e?OL�� w�?�«Ë W��U�?�*« WO?�O�d?��« oDM�U�
UN�S?�  bOL?� WJ�� vK� oDM�« pK�� wD�« �ËU?�� ◊UI?�≈ bM�Ë Æ b�«Ë
U2 , Y�b??(« wD�« �u?�?� U?��u?�?� �b?�?� YO?� vLE� �dz«� v?K� lI�

Æ W�«�b�« l{u� WIDM*U� w�O�d��« �uD��« vK� ·dF��« w� b�U��
wD�« qOK?�?�� W��b?F�« W?'U?F*« �d� W?�«�b?�« Ác� w� Âb?�?�?�« b?�Ë
rOLB� w� w�Ë� b�Ë Æ c�«uM�«  UIO�D� Â«b?���U� W��d��« v�≈ W�U{ùU�
e?O?L?�� U?L?� , �ö?L?F?�?�ô« W?��Ë W?�ö?� b?�R� U0 U?�b�Ëe� �b?�U?I�« Ác�
o�UMLK� �b?I?F?� WO?�?O?�d�  U�U?O� Í√ rz«u?�� UNK?OJA� sJ1 YO?� W�Ëd*U�

Æ WHK�<«




