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ABSTRACT.  A new and simple method based on constrained nonlinear
programming concepts is being proposed in this research to interpret
the self-potential (SP) anomaly due to two-dimensional inclined
sheets of finite depth extent. A constrained nonlinear model has been
formulated to describe the geophysical problem related to this buried
inclined structure. Thereafter this model has been solved by the
famous Frank and Wolfe algorithm in order to estimate the geo-
physical parameters of the modeled sheets which are: the depth of
upper and lower edges h and H, inclination angle θ, and electrical
dipole moment k. This algorithm is chosen for being robust and also
because its application to SP data converges rapidly towards the op-
timal estimation of parameters. To prove the efficiency of this new
constrained nonlinear programming technique, three theoretical mod-
els with a random noise of 2% have been studied, and as a result, a
very close and satisfactory agreement has been obtained between the
assumed and evaluated parameters. The validity of this new proposed
method is tested on a practical field example from India, where avail-
able SP data existed and has been previously analyzed by a spectral
analysis approach. Moreover, a statistical analysis has been carried
out to confirm the superiority of this method in comparison with that
suggested by Atchuta et al. (1982). All acquired results indicate clear-
ly its precision and accuracy. The advantages of the proposed tech-
nique have also been discussed and demonstrated comparing them
with other published interpretative techniques. 

KEYWORDS: Self-potential anomalies, Polarized structures, SP inter-
pretation, Mathematical programming.
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Introduction

Self-Potential (SP) prospecting is one of the oldest geoelectrical methods and it
is still used in many fields of applied geophysics. Several techniques have been
proposed and discussed in the literature for interpreting the self-potential anom-
alies. These techniques are:

1 � Using only a few characteristics points on the anomaly curve. The meth-
ods falling in this category were originally developed by Yungul (1950), Paul
(1965) and Bhattacharya and Roy (1981). The essential disadvantage of these
methods is related to the fact that only a few points are used on the anomaly
curve and hence the interpreted results are less reliable, taking into account that
in most cases the data is contaminated by noise. However, these methods are
considered to be fast and suitable for giving a rough estimation.

2 � Using curve matching techniques Meiser (1962), in which the SP field
curve is compared to an album of pre-computed theoretical curves. This process is
cumbersoming and the complexity of the method is very high when the variables
are numerous and when the process deals with a large number of anomalies.

3 � Using least-squares methods by means of which the final estimation can
be found by an iterative procedure (Abdelrahman et al. 1997; Abdelrahman and
Sharafldin, 1997).

4 � Using a spectral analysis approach, in which the SP data is analyzed and
interpreted in the wave number domain by using the Fourier transform (am-
plitude and phase spectra), (Atchuta et al. 1982).

More recently, Asfahani and Tlas (2002) developed a constrained nonlinear
programming approach to determine the shape of the buried structure from re-
sidual SP data. 

The main goal of the present work is to implement a new and simple method
based on point estimation of geophysical parameters from measured SP data
due to two-dimensional inclined sheets of finite depth extent. In fact, estimating
the depth to the upper and lower edges h and H of sheets, inclination angle θ,
and electrical dipole moment k, is a tedious task confronting the mineral in-
dustry searching for both sulfides and graphite. The new proposed method is
based on the formulation of a constrained nonlinear programming problem
solved by using Frank and Wolfe�s algorithm (Dantzing 1964; Minoux 1983).
This suggested technique has first been tested on theoretical models with ran-
dom noise and then on a practical field data example taken from India (Atchuta
et al. 1982). The accuracy of the result obtained by this constrained nonlinear
programming approach depends upon the accuracy to which the residual anom-
alies can be separated from the observed self-potential data and on the suit-
ability of the model to represent the polarized object.
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Frank and Wolfe Algorithm for the Inversion of SP Data

Constrained nonlinear programming technique is very famous for its applica-
tion in many fields of science such as chemical engineering (Bailey et al. 1993;
Dantzing 1964), control theory (Biegler 1998), decision theory (Steuer 1986) ...
etc. In the present work this technique is applied to the inversion and inter-
pretation of geophysical SP data.

Frank and Wolfe algorithm is considered one of the tools of constrained non-
linear programming technique, and commonly used for solving constrained non-
linear programming problems (Steuer 1986; Frank and Wolfe 1956 & Minoux
1983). This algorithm is used to solve the constrained nonlinear model that has
been formulated to interpret the SP data due to a buried inclined sheet.  

Let f : Rm → R be a continuously differentiable function to be minimized
over the subset  Axxx Rm, which is convex and compact in the real space Rm.
In mathematical form, the problem can be described as follows: 

     Min   f (u) (1)

subject to   u ∈  A

Here, m is the number of decision variables and u is the vector of decision var-
iables. To solve this problem, the Frank-Wolfe algorithm proceeds as follows:

1. Start with an initial point u0 ∈ int (A) where int (A) denotes the exact in-
terior of A

2. For k = 0, 1, 2 ... iterate still the stopping criteria will be verified

i) Determine the feasible (displacement) direction by solving the fol-
lowing linear problem:

Min [∇f  (uk)]T  u (2)

subject   to   u ∈ A

 Where ∇f denotes the gradient vector of the function f and T denotes the vec-
tor transpose.

Let  vk be an optimal solution.  The feasible direction is defined as follows:

dk = vk � uk (3)

ii) Perform a line search in the feasible direction dk by solving the fol-
lowing one-dimensional problem: 

Min  f  (uk + λdk) (4)

λ ∈ [0,1]

 ⊃
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Let  λk be an optimal solution. Set uk+1 = uk + λkd
k.  

iii) Evaluate the stopping criteria (see below); terminate the algorithm if
verified; else set  

k = k +1 and return to step i).

Appropriate Stopping Criteria of the Algorithm

If one of the following criteria is satisfied, then the algorithm will be stopped.

a) | f(uk+1) � f(uk) | < ε0 , where ε0 is a small positive predetermined real
number.

b) ||(uk+1 � uk ||  < ε0 , where ε0 is a small positive predetermined real num-
ber and || ||denotes the  L2-norm in the space Rm.

c) ||∇f (uk)|| < ε0 ,  where ε0 is a small positive predetermined real number. 

Comments on the Algorithm

1. The Frank-Wolfe algorithm has been chosen for its properties of being ro-
bust and converging relatively well towards the optimal solution.

2. If the function f(u) is convex on the subset AxlxRm, then uk is a global min-
imum.

3. When the assumption of convexity of the function f(u) is not satisfied, this
algorithm should be repeated a number of times by starting from a variety of
initial trial solutions. The best of the local minima thereby obtained for the
problem should be used as the best available approximation of global minima.

Formulating the Geophysical Problem

The geometry of the inclined sheet of finite depth extent is shown in Fig. 1.
The upper and lower edges of the sheet are situated at depth h and H units re-
spectively below the ground surface. The expression for the SP anomaly due to
the sheet along a profile perpendicular to its strike is given by Roy and Chowd-
hury (1959) as follows:

Where I is the current per units length.

ρ is the resistivity of the surrounding medium.

r1 , r2  are the distances of the edges of the sheet from the point of
observation.

From Fig. 1, it is clear that:

⊃
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FIG. 1. Cross section of an inclined sheet of finite depth extent (Atchuta et al., 1982).
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θ  is the inclination angle.
x is the distance of the point of observation from the origin.

Substituting for  r1 and r2 in equation (5), the following equation is obtained:

Putting V(xi) = 0 in equation (6), the following equality is obtained:

Putting xi = 0 in equation (6), the following equality is found:     

The depth of center z is given by:

The length of the sheet l is given by:                   

The parameters h, H, θ and  xxxllxxx  are determined at the same time by the

inversion technique developed in this research.
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The SP anomaly due to a sheet with h = 2 units, H = 5 units, θ = 60 degrees,
and k = ρI/2π =100 mV was computed using equation (6) and is shown in Fig. 2.
The zero anomaly distance x0 and the anomaly value at the origin V(0) are also
shown in Fig. 2. The evaluation of the inclined sheet parameters (h, H, θ, k) is
the goal of this research work. These parameters can be evaluated by applying
the Frank and Wolfe algorithm to the following constrained nonlinear pro-
gramming problem:       

FIG. 2. The SP anomaly V(x) over an inclined sheet of finite depth extent with h = 2 units, H = 5
units, θ = 60 degrees and k=100 mV.

Subject to h  ≤  hmax

H  ≤  Hmax

θ  ≤  θmax

k   ≤   kmax

h, H, θ, k  ≥  0

Where  xxllxxxxxand L(xi) are the values of the SP anomaly at the points xi(i

= 1, ..., N).                     

The feasible subset A is defined as follows:  
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This subset is convex and compact. All the necessary conditions for using
Frank and Wolfe�s algorithm are verified and the solution found by this ap-
proach is an optimal solution of problem (9). Introducing the equality (6) into
the mathematical program (9), the following constrained nonlinear geophysical
programming problem is obtained: 

Subject to h  ≤  hmax

H  ≤  Hmax

θ  ≤  θmax

k   ≤   kmax

h, H, θ, k  ≥  0

The proposed algorithm to be used in the inversion of SP data is adopted
where:  

hmax,  Hmax , θmax and kmax are 500 meters, 1000 meters, 180 degrees and 106

mV respectively. The choice of these values is completely arbitrary and the con-
vergence of our proposed method is not influenced by this choice.

Numerical Examples

The main objective of the constrained nonlinear programming inversion tech-

nique is to get the values of  h, H, θ and xxmmxxx related to two- dimensional

inclined sheets of finite depth extent. This scheme was applied to both synthetic
and real field data from various publications of which one field example is
shown.

I �  Synthetic Example

Three data sets were computed for theoretical models with a random error of
2% analyzed and tested as shown in Table 1. These three cases were studied for
a profile length of 256 meters and a sampling interval of 1-meter. The first
model parameters chosen for this study are the following: h = 2 units, H = 5
units, θ = 60 degree and k = 100 mV. The second model parameters are the fol-
lowing: h = 4 units, H = 10 units, θ = 30 degree and k = 200 mV. The third
model parameters are the following: h = 6 units, H = 12 units, θ =75 degree and
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k = 150 mV.  The comparison between the assumed and evaluated parameters
shows excellent agreement between them. This agreement proves the high ef-
ficiency of the proposed constrained nonlinear programming technique. 

TABLE 1. Results for synthetic data for a profile of 256 m, sampling interval 1 m, with random er-
ror of 2%.

Assumed  parameters Evaluated parameters Percentage of error

h H θ k h H θ k
in h in H in θ in kunits units degrees mili volt units units degrees mili volt

2   5 60 100 2.001   4.998 60.004 102.075 0.050 0.040 0.006 2.075
4 10 30 200 3.999   9.999 29.998 203.982 0.025 0.010 0.006 1.991
6 12 75 150 6.002 11.99 74.990 153.208 0.033 0.058 0.013 2.138

II � Field Example

The proposed technique for the inversion of SP data has been applied to inter-
pret the SP anomaly (Fig. 3) obtained across a mineralized belt in the Kalava fault
zone, 52 km south of Kurnool in the Cuddapah Basin, Andhra, Pradesh, India
(Sanker Narayan et al., 1982). Earlier drilling of some anomalies in this area by the
Geological Survey of India encountered carbonaceous shales with sulfide miner-
alization. These might be the sources causing the SP anomaly. The SP profile hav-
ing the length of 255 meters has been digitized at an interval of 6.375 meters (1-
unit = 6.375 meters) and subjected to interpretation by the new approach. The eval-
uated parameters obtained by the constrained nonlinear programming technique
are shown in Table 2. The depth to the top and bottom (h, H) are 3.064 units and
8.029 units respectively. The inclination angle θ  and the electrical dipole moment
k are evaluated as equal to 105 degrees and 57 mV respectively. Using these evalu-
ated parameters, the theoretical profile has been computed for direct comparison
with the field data in Fig. 3. This comparison indicates clearly the close match be-
tween the observed and the computed anomalies. The depth to the target (h) ob-
tained by Sanker Narayan et al. (1982) method is 17 meters. Table 2 and Fig. 3
show comparison of the results obtained by our constrained nonlinear pro-
gramming approach and those obtained by Atchuta et al. (1982) who used a Fouri-
er transform method.  Both results will be statistically analyzed and discussed to
demonstrate the advantages and the superiority of our proposed technique.

Statistical Analysis and Comparison Study

To confirm the efficiency of our proposed method in comparison with the
method of Atchuta et al. (1982), the standard errors and the confidence intervals
for both methods have been computed. Following that, the statistical Fisher test
has been applied. 
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TABLE 2. Comparison of results using two different interpretation methods.

     Evaluated parameters Interpretation of Atchuta et al. (1982) Present method

h in meters 15.9    19.345

H in meters 41.2    51.186

θ in degrees 110 105

k in mV 63.68  57

x0 in meters � �135.417

V(0) in mV � �111.386

z depth of center in meters �     35.360

l length of sheet in meters �     32.782

The standard error (i.e., standard deviation of residuals) is given by the fol-
lowing equality:

Where P is the number of independent parameters. In our method P = 4 (i.e.,
H, H, θ, k) and N is equal to 198 discrete points. Using this equation, the stan-
dard error for our method is found to be equal to S1 = 8.053 and the standard
error for Atchuta et al. (1982) is found to equal to S2 = 10.862.    
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FIG. 3. SP anomaly over a sulfide body in the Kalava fault zone (Cuddapah basin, India). The
theoretical computed anomalies are also shown for both methods.
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For a confidence level of 1 � α = %95 (α = 0.05), the confidence interval is
given by the following inequalities:

Where xxxlllxxxxxxxxxxxxxx  (Z-test is generally used for a large number of

measurements N ≥ 30).

For our method, this interval is found to be:

 V(xi, h, H, θ, k) � 1.96 × 8.053 ≤ L(xi) ≤ V(xi, h, H, θ, k) + 1.96 × 8.053 ⇒

V(xi, h, H, θ, k) � 15.784 ≤ L(xi) ≤ V(xi, h, H, θ, k) + 15.784    (i = 1, ..., 198)

From the above inequalities, it is clear that 95% of the SP field measurements
belong to this interval.            

Applying the same steps for Atchuta et al. (1982) results, the confidence in-
terval is found to be equal to:

V(xi, h, H, θ, k) � 21.290 ≤ L(xi) ≤ V(xi, h, H, θ, k) + 21.290    (i = 1, ..., 198)

It is clear from this comparison between these two methods that the standard
error calculated for our method is less than that the standard error for the meth-
od of Atchuta et al. In addition, the confidence interval related to our method is
completely included in the confidence interval of Atchuta et al. which indicates
the improved accuracy of our proposed interpretative method. 

To establish the preciseness of our method, a Fisher test has been imple-
mented as follows:

Suppose σ1 and σ2 are the population standard errors (the population here is
the field measurements when the number of measurements N tends to the in-
finity ( N → ∞)) for both our method and Atchuta et al., method respectively.

Suppose also the null hypothesis H0 : σ2
1 = σ2

2 (i.e., the two methods have the
same precision) is examined against the alternative hypothesis H1 : σ2

1 = σ2
2

(i.e., our method is more precise than that of Atchuta et al.).  

The Fisher statistic is given by 

The critical value for 95% confidence level is  f
1�a

(v1 , v2) = f
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 (197,197) =
1.26 ,                                
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where v1 , v2 are the freedom degrees (v1 = v2  = N � 1).

The rejection region is: F ≤  f
1�a

(v1 = v2) = f0.95 (197, 197) and the ac-
ceptance region is:

F > f
1�a

(v1 , v2) = f0.95 (197,197)

Having that, the value of 0.55 belongs to the rejection region (0.55 < 1.26).
The null hypothesis H0 is therefore rejected, and consequently the alternative
hypothesis H1 is accepted. As a conclusion it follows that σ1 <  σ2 which means
that, our method is more precise than that of Atchuta et al. (1982).

Discussion and Conclusion

In this paper, a new geophysical method is being proposed for the inter-
pretation of SP anomalies related to buried inclined sheets of finite depth extent.
The proposed method is based on the constrained nonlinear programming con-
cept. First of all, a constrained nonlinear model has been formulated to describe
the geophysical problem related to the buried inclined sheet. This constrained
nonlinear geophysical model has been solved by using the robust Frank and
Wolfe algorithm. Its application to the SP data converges rapidly towards an op-
timal estimation of parameters. The utilization of the new proposed constrained
nonlinear programming technique easily leads to the estimation of the inclined
sheet parameters, i.e., depth to upper and lower edges h, and H, inclination an-
gle θ, and electrical dipole moment k. The advantages of the constrained non-
linear programming technique over other interpretative techniques which only
use a few points, distances, and nomograms, are: 1) All observed values are
used during the interpretation process. 2) The technique is automatic. 3) The
four parameters (h, H, θ, k) are determined at the same time by finding an op-
timal solution. The proposed approach has been validated with synthetic and
real data. The application of the constrained nonlinear programming technique
to a set of practical field data resulted in good agreement between observed and
computed data. Statistical analysis indicates also the precision of our method
and its superiority, in comparison with other interpretative methods. Therefore,
the proposed technique can be used for routine analysis of SP data to determine
the parameters with ease and accuracy.  
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